Computing the Character Table of a 2-local Maximal Subgroup of the Monster

Anthony Pisani

Monash University

November 17, 2025

Outline

Aim

Compute the character table of $2^{5+10+20} \cdot (S_3 \times L_5(2))$.

- Background
- Character Table Computation

Motivation

Character tables nicely "summarise" groups.

All groups factor into a composition series of simple groups, so their character tables are of particular interest.

Whole books have been published on the subject (e.g. the ATLAS)!

Simple groups still have a subgroup structure: look at their *maximal* subgroups too.

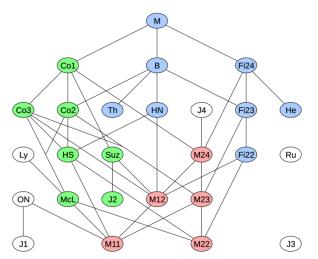
Sporadic groups & the Monster

The **CFSG** (Classification of Finite Simple Groups) asserts all simple groups, except 26 **sporadic groups**, belong to one of 18 infinite families.

The Monster $\mathbb M$ is the largest sporadic group by far: $\approx 2 \times 10^{20}$ times bigger than the Baby Monster $\mathbb B$ in second place. First constructed by Griess in 1982 as a 196884-dimensional matrix group.

$$|\mathbb{M}| \approx 8 \times 10^{53}$$
.

Sporadic groups & the Monster



The Sporadic Groups (SporadicGroups.png, Wikimedia Commons: CC BY-SA 4.0)

A Lack of Character

Character tables of the sporadic simple groups have been known for over 4 decades.

Tables for their maximal subgroups have taken longer: for 25 of the sporadic groups, these were completed by mid-2012.

A Lack of Character

Character tables of the sporadic simple groups have been known for over 4 decades.

Tables for their maximal subgroups have taken longer: for 25 of the sporadic groups, these were completed by mid-2012.

But the problems for the Monster's maximal subgroups remained: even the list of subgroups wasn't settled until 2024.

A Monster of a Problem

The Monster is just too complicated for straightforward calculations!

A Monster of a Problem

The Monster is just too complicated for straightforward calculations!

As a matrix group: 196882 dimensions (vs. \mathbb{B} 's 4370) As a permutation group: $\approx 10^{20}$ points (vs. \mathbb{B} 's $\approx 10^{10}$)

Subgroups may be more amenable, but determining their precise structure is itself a challenge.

A Monster of a Problem

The Monster is just too complicated for straightforward calculations!

```
As a matrix group: 196882 dimensions (vs. \mathbb{B}'s 4370)
As a permutation group: \approx 10^{20} points (vs. \mathbb{B}'s \approx 10^{10})
```

Subgroups may be more amenable, but determining their precise structure is itself a challenge.

Bray and Wilson (2006) give permutation representations for all then-known maximal subgroups of \mathbb{M} , **except** the 2-local cases.

Sophisticated computational methods of Holmes and Wilson allowed most maximal subgroups of \mathbb{M} to be determined by 2013.

mmgroup

Unfortunately, Holmes and Wilson's code is unreleased and still undesirably slow. Only in 2022 did fast group operations in $\mathbb M$ become possible: Seysen's mmgroup Python package.

Dietrich, Lee, and Popiel used mmgroup to complete the classification of maximal subgroups of \mathbb{M} in 2023.

mmgroup

Unfortunately, Holmes and Wilson's code is unreleased and still undesirably slow. Only in 2022 did fast group operations in $\mathbb M$ become possible: Seysen's mmgroup Python package.

Dietrich, Lee, and Popiel used mmgroup to complete the classification of maximal subgroups of $\mathbb M$ in 2023.

They and I constructed all maximal subgroups (bar one) in mmgroup last year.

Meanwhile, Burness, Hulpke, and others constructed the ordinary character tables of all maximal subgroups...

mmgroup

Unfortunately, Holmes and Wilson's code is unreleased and still undesirably slow. Only in 2022 did fast group operations in $\mathbb M$ become possible: Seysen's mmgroup Python package.

Dietrich, Lee, and Popiel used mmgroup to complete the classification of maximal subgroups of $\mathbb M$ in 2023.

They and I constructed all maximal subgroups (bar one) in mmgroup last year.

Meanwhile, Burness, Hulpke, and others constructed the ordinary character tables of all maximal subgroups. . . except $2^{5+10+20} \cdot (S_3 \times L_5(2))$.

The Maximal Subgroups of ${\mathbb M}$

$2 \cdot \mathbb{B}$	$(D_{10} \times HN) \cdot 2$	$(A_5 \times A_{12}):2$
$2^{1+24}\cdot \text{Co}_1$	$5^{1+6}:2\cdot J_2:4$	$(A_6 \times A_6 \times A_6) \cdot (2 \times S_4)$
$2^{2\cdot 2}E_{6}(2):S_{3}$	$(5^2:4\cdot 2^2 \times U_3(5)):S_3$	$(A_5 \times U_3(8):3):2$
$2^{2+11+22} \cdot (M_{24} \times S_3)$	5^{2+2+4} : $(S_3 \times GL_2(5))$	$(PSL_3(2) \times S_4(4):2) \cdot 2$
$2^{3+6+12+18} \cdot (PSL_3(2) \times 3.S_6)$	$5^{3+3} \cdot (2 \times PSL_3(5))$	$(PSL_2(11) \times M_{12}):2$
$2^{5+10+20} \cdot (S_3 \times PSL_5(2))$	5^4 : $(3 \times 2 \cdot PSL_2(25))$:2	$(A_7 \times (A_5 \times A_5) : 2^2) : 2$
$2^{10+16} \cdot O_{10}^{+}(2)$	$(7:3 \times \text{He}):2$	$M_{11} imes A_6 \cdot 2^2$
$3 \cdot Fi_{24}$	7^{1+4} : $(3 \times 2.S_7)$	$(S_5 \times S_5 \times S_5):S_3$
$3^{1+12} \cdot 2 \cdot \text{Suz}:2$	$(7^2: (3 \times 2.A_4) \times PSL_2(7)):2$	$(PSL_2(11) \times PSL_2(11)):4$
$\mathrm{S}_3 imes Th$	7^{2+1+2} :GL ₂ (7)	$U_3(4):4$
$(3^2:2 \times O_8^+(3)) \cdot S_4$	$7^2:SL_2(7)$	$PSL_2(71)$
3^{2+5+10} : $(M_{11} \times 2.S_4)$	$11^2:(5\times 2.A_5)$	$\frac{\text{PSL}_2(59)}{\text{S9:29}}$
$3^{3+2+6+6}$: (PSL ₃ (3) × SD ₁₆)	$(13:6 \times PSL_3(3)) \cdot 2$	$PSL_2(41)$
$3^8 \cdot O_8^-(3).2$	13^{1+2} : $(3 \times 4.S_4)$	$PGL_2(29)$
	$13^2:SL_2(13):4$	$PGL_2(19)$
	41:40	$PGL_2(13)$

The maximal subgroups of M.

Outline

Aim

Compute the character table of $2^{5+10+20} \cdot (S_3 \times L_5(2))$.

- Background
- Character Table Computation

The Choice of Tools

Most character tables of maximal subgroups of $\mathbb M$ have been computed in Magma with Bray and Wilson's permutation representations.

The Choice of Tools

Most character tables of maximal subgroups of $\mathbb M$ have been computed in Magma with Bray and Wilson's permutation representations.

Problem: permutation representations of 2-local subgroups seem elusive.

Could use mmgroup representations, but mmgroup currently has limited functionality.

Hybrid Groups

Hulpke (2024) handles the 2-local subgroup $2^{10+16} \cdot O_{10}^+(2)$ differently: as a *hybrid group* in GAP.

The implementation, based on Dietrich and Hulpke (2021), represents a group G by a solvable normal subgroup H, the quotient G/H, and the conjugation action of G/H on H.

Hybrid Groups

Hulpke (2024) handles the 2-local subgroup $2^{10+16} \cdot O_{10}^+(2)$ differently: as a *hybrid group* in GAP.

The implementation, based on Dietrich and Hulpke (2021), represents a group G by a solvable normal subgroup H, the quotient G/H, and the conjugation action of G/H on H.

This works for $2^{5+10+20}$ ·($S_3 \times L_5(2)$) too: we can obtain the hybrid representation from mmgroup, and even translate between it and the mmgroup copy.

Mostly straightforward: use GAP commands.

For computing characters, adopt the more efficient approach used in Magma, which uses Brauer's Theorem on Induced Characters:

Mostly straightforward: use GAP commands.

For computing characters, adopt the more efficient approach used in Magma, which uses Brauer's Theorem on Induced Characters:

Theorem (Brauer's Theorem on Induced Characters)

Let G be a finite group. Then the complex-valued characters of G lie in an integer lattice spanned by characters induced from "elementary" subgroups of G (i.e. those which are direct products of Sylow subgroups and cyclic groups).

Mostly straightforward: use GAP commands.

For computing characters, adopt the more efficient approach used in Magma, which uses Brauer's Theorem on Induced Characters:

Theorem (Brauer's Theorem on Induced Characters)

Let G be a finite group. Then the complex-valued characters of G lie in an integer lattice spanned by characters induced from "elementary" subgroups of G (i.e. those which are direct products of Sylow subgroups and cyclic groups).

Implementing this in GAP specifically for $2^{5+10+20} \cdot (S_3 \times L_5(2))$ is mostly OK, especially since elementary subgroups are so nice.

Problem: we need the character table of $P \in \mathrm{Syl}_2(2^{5+10+20} \cdot (\mathrm{S}_3 \times \mathrm{L}_5(2)))$, which is huge: $|P| = 2^{46}$, and P's character table is 26758×26758 .

Introduce some optimisations.

Problem: we need the character table of $P \in \mathrm{Syl}_2(2^{5+10+20} \cdot (\mathrm{S}_3 \times \mathrm{L}_5(2)))$, which is huge: $|P| = 2^{46}$, and P's character table is 26758×26758 .

Introduce some optimisations.

Parallelise: GAP's algorithm for characters of *p*-groups works by inducing from numerous subgroups, which can be done in parallel.

Problem: we need the character table of $P \in \mathrm{Syl}_2(2^{5+10+20} \cdot (\mathrm{S}_3 \times \mathrm{L}_5(2)))$, which is huge: $|P| = 2^{46}$, and P's character table is 26758×26758 .

Introduce some optimisations.

Parallelise: GAP's algorithm for characters of *p*-groups works by inducing from numerous subgroups, which can be done in parallel.

Skip 0s: Thümmel (1996) observes that characters of *p*-groups will vanish on many conjugacy classes, which we skip.

Problem: we need the character table of $P \in \mathrm{Syl}_2(2^{5+10+20} \cdot (\mathrm{S}_3 \times \mathrm{L}_5(2)))$, which is huge: $|P| = 2^{46}$, and P's character table is 26758×26758 .

Introduce some optimisations.

Parallelise: GAP's algorithm for characters of *p*-groups works by inducing from numerous subgroups, which can be done in parallel.

Skip 0s: Thümmel (1996) observes that characters of *p*-groups will vanish on many conjugacy classes, which we skip.

Output: GAP tries to do everything silently in RAM, which is less than ideal.

Problem: we need the character table of $P \in \mathrm{Syl}_2(2^{5+10+20}\cdot(\mathrm{S}_3 \times \mathrm{L}_5(2)))$, which is huge: $|P| = 2^{46}$, and P's character table is 26758×26758 .

Introduce some optimisations.

Parallelise: GAP's algorithm for characters of *p*-groups works by inducing from numerous subgroups, which can be done in parallel.

Skip 0s: Thümmel (1996) observes that characters of *p*-groups will vanish on many conjugacy classes, which we skip.

Output: GAP tries to do everything silently in RAM, which is less than ideal.

It still takes a few weeks, but eventually this yields all the characters of P (and thus of $2^{5+10+20} \cdot (S_3 \times L_5(2))$).

Problem: we need the character table of $P \in \mathrm{Syl}_2(2^{5+10+20} \cdot (\mathrm{S}_3 \times \mathrm{L}_5(2)))$, which is huge: $|P| = 2^{46}$, and P's character table is 26758×26758 .

Introduce some optimisations.

Parallelise: GAP's algorithm for characters of *p*-groups works by inducing from numerous subgroups, which can be done in parallel.

Skip 0s: Thümmel (1996) observes that characters of *p*-groups will vanish on many conjugacy classes, which we skip.

Output: GAP tries to do everything silently in RAM, which is less than ideal.

than ideai.

It still takes a few weeks, but eventually this yields all the characters of P (and thus of $2^{5+10+20} \cdot (S_3 \times L_5(2))$).

Thank you!