The Maximal Subgroups of the Monster Group

Anthony Pisani

Joint work with Heiko Dietrich, Melissa Lee, and Tomasz Popiel

Monash University

AAC 2024

Outline

Aim

Construct instances of each of the 46 conjugacy classes of maximal subgroups in the Monster in mmgroup.

- Background
- Constructing Subgroups

Motivation

To understand things, try decomposing them.

Repeatedly factoring maximal normal subgroups out of a group gives its **composition series**. The Jordan–Hölder theorem shows this is a well-defined factorisation into simple groups.

Simple groups still have a subgroup structure: look at their *maximal* subgroups.

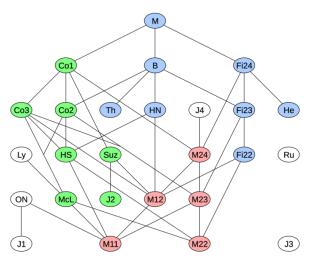
Sporadic groups & the Monster

The **CFSG** (Classification of Finite Simple Groups) asserts all simple groups, except 26 **sporadic groups**, belong to one of 18 infinite families.

The Monster $\mathbb M$ is the largest sporadic group by far: $\approx 2 \times 10^{20}$ times bigger than the Baby Monster $\mathbb B$ in second place. First constructed by Griess in 1982 as a 196884-dimensional matrix group.

$$|\mathbb{M}| \approx 8 \times 10^{53}$$
.

Sporadic groups & the Monster



The Sporadic Groups (SporadicGroups.png, Wikimedia Commons: CC BY-SA 4.0)

A Monster of a Problem

The maximal subgroups for 25 sporadic groups were determined by 1999, with increasing computational demands for larger groups.

But the Monster is just too complicated for straightforward calculations!

A Monster of a Problem

The maximal subgroups for 25 sporadic groups were determined by 1999, with increasing computational demands for larger groups.

But the Monster is just too complicated for straightforward calculations!

```
As a matrix group: 196882 dimensions (vs. B's 4370)
```

As a permutation group: $\approx 10^{20}$ points (vs. \mathbb{B} 's $\approx 10^{10}$)

A Monster of a Problem

The maximal subgroups for 25 sporadic groups were determined by 1999, with increasing computational demands for larger groups.

But the Monster is just too complicated for straightforward calculations!

As a matrix group: 196882 dimensions (vs. \mathbb{B} 's 4370) As a permutation group: $\approx 10^{20}$ points (vs. \mathbb{B} 's $\approx 10^{10}$)

Sophisticated computational methods of Holmes and Wilson allowed most potential subgroups of $\mathbb M$ to be handled by 2013.

mmgroup

Unfortunately, Holmes and Wilson's code is unreleased and still undesirably slow. Only in 2022 did fast group operations in \mathbb{M} become possible: Seysen's mmgroup Python package.

Dietrich, Lee, and Popiel used mmgroup to complete the classification of maximal subgroups of \mathbb{M} in 2023.

Outline

Aim

Construct instances of each of the 46 conjugacy classes of maximal subgroups in the Monster in mmgroup.

- Background
- Constructing Subgroups

The Maximal Subgroups of $\ensuremath{\mathbb{M}}$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(D_{10} \times HN) \cdot 2$	$(A_5 \times A_{12}):2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{1+24} \cdot \text{Co}_1$	$5^{1+6}:2\cdot J_2:4$	$(A_6 \times A_6 \times A_6) \cdot (2 \times S_4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{2\cdot 2}E_6(2):S_3$	$(5^2:4\cdot2^2 \times U_3(5)):S_3$	$(A_5 \times U_3(8):3):2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{2+11+22} \cdot (M_{24} \times S_3)$	5^{2+2+4} : (S ₃ × GL ₂ (5))	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{3+6+12+18} \cdot (PSL_3(2) \times 3.S_6)$	$5^{3+3} \cdot (2 \times PSL_3(5))$	$(PSL_2(11) \times M_{12}):2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{5+10+20} \cdot (S_3 \times PSL_5(2))$		$(A_7 \times (A_5 \times A_5):2^2):2$
$\begin{array}{lll} 3\text{-}\mathrm{Fi}_{24} & 7^{1+4}\text{:} (3 \times 2.\mathrm{S}_7) & (\mathrm{S}_5 \times \mathrm{S}_5 \times \mathrm{S}_5) : \mathrm{S}_3 \\ 3^{1+12} \cdot 2 \cdot \mathrm{Suz} : 2 & (7^2 : (3 \times 2.\mathrm{A}_4) \times \mathrm{PSL}_2(7)) : 2 \\ \mathrm{S}_3 \times \mathrm{Th} & 7^{2+1+2} : \mathrm{GL}_2(7) & \mathrm{U}_3(4) : 4 \\ (3^2 : 2 \times \mathrm{O}_8^+(3)) \cdot \mathrm{S}_4 & 7^2 : \mathrm{SL}_2(7) & \mathrm{PSL}_2(71) \end{array}$	$2^{10+16} \cdot O_{10}^{+}(2)$	(7:3 × He):2	$M_{11} \times A_6 \cdot 2^2$
$S_3 \times Th$ $7^{2+1+2}:GL_2(7)$ $U_3(4):4$ $(3^2:2 \times O_8^+(3)) \cdot S_4$ $7^2:SL_2(7)$ $PSL_2(71)$	3·Fi ₂₄	7^{1+4} : $(3 \times 2.S_7)$	$(S_5 \times S_5 \times S_5):S_3$
$S_3 \times Th$ $7^{2+1+2}:GL_2(7)$ $U_3(4):4$ $(3^2:2 \times O_8^+(3)) \cdot S_4$ $7^2:SL_2(7)$ $PSL_2(71)$	$3^{1+12} \cdot 2 \cdot \text{Suz}:2$	$(7^2: (3 \times 2.A_4) \times PSL_2(7)):2$	$(PSL_2(11) \times PSL_2(11)):4$
$(3^2:2 \times O_8^+(3)) \cdot S_4$ $7^2:SL_2(7)$ $PSL_2(71)$		7^{2+1+2} :GL ₂ (7)	$U_3(4):4$
	$(3^2:2 \times O_8^+(3)) \cdot S_4$	$7^2:SL_2(7)$	$PSL_2(71)$
3^{2+5+10} : $(M_{11} \times 2.S_4)$ 11^2 : $(5 \times 2.A_5)$ $PSL_2(59)$	3^{2+5+10} : $(M_{11} \times 2.S_4)$	11^2 : $(5 \times 2.A_5)$	$PSL_2(59)$
$3^{3+2+6+6}$: (PSL ₃ (3) × SD ₁₆) (13.6 × PSL ₃ (3)) · 2 PSL ₂ (41)	$3^{3+2+6+6}$: (PSL ₃ (3) × SD ₁₆)	$(13:6 \times PSL_3(3)) \cdot 2$	$PSL_2(41)$
$3^8 \cdot O_8^-(3).2$ $13^{1+2} : (3 \times 4.S_4)$ $PGL_2(29)$	$3^8 \cdot O_8^-(3).2$	13^{1+2} : $(3 \times 4.S_4)$	$PGL_2(29)$
$13^2:SL_2(13):4$ $PGL_2(19)$	-		$PGL_2(19)$
59:29 $41:40$ $PGL_2(13)$	59:29	41:40	$PGL_2(13)$

The maximal subgroups of M.

Not like this: MaximalSubgroups(group)

Not like this: MaximalSubgroups(group)

Instead, usually like so:

1 Fix $H < \mathbb{M}$ to construct.

Not like this: MaximalSubgroups(group)

Instead, usually like so:

- Fix H < M to construct.
- ② Find elements of H in a subgroup of \mathbb{M} already known.

Not like this: MaximalSubgroups(group)

Instead, usually like so:

- Fix $H < \mathbb{M}$ to construct.
- ② Find elements of H in a subgroup of \mathbb{M} already known.
- Find elements of H in another subgroup already known.

Not like this: MaximalSubgroups(group)

Instead, usually like so:

- Fix $H < \mathbb{M}$ to construct.
- ② Find elements of H in a subgroup of \mathbb{M} already known.
- Find elements of H in another subgroup already known.
- Repeat until the elements found generate H.

2B centralisers

We need some subgroups of \mathbb{M} to start.

The Monster contains a conjugacy class of involutions 2B. Centralisers $C_{\mathbb{M}}(x)$ of $x \in 2B$ are very convenient:

- the centraliser $\mathbf{G} = C_{\mathbb{M}}(z)$ of a certain $z \in 2\mathsf{B}$ is built into mmgroup.
- for any $x \in 2B$, mmgroup can efficiently find h such that $z = x^h$, i.e. $C_{\mathbb{M}}(x)^h = \mathbf{G}$.
- many subgroups contain a 2B involution.

2B centralisers

We need some subgroups of \mathbb{M} to start.

The Monster contains a conjugacy class of involutions 2B. Centralisers $C_{\mathbb{M}}(x)$ of $x \in 2B$ are very convenient:

- computations in **G** are extremely fast.
- mmgroup can efficiently compute some characters at any $x \in \mathbf{G}$.
- mmgroup provides a homomorphism $\phi: \mathbf{G} \to \mathrm{Co}_1 < \mathrm{GL}_{24}(2)$ which allows us to work in GAP / Magma.

Projection and Lifting

Key Point

mmgroup provides a homomorphism $\phi: \mathbf{G} \to \mathsf{Co}_1 < \mathsf{GL}_{24}(2)$ which allows us to work in GAP / Magma.

The centraliser or normaliser of $x \in \mathbf{G}$ in $\phi(\mathbf{G})$ contains its centraliser or normaliser in \mathbf{G} . We can generate the supergroups in GAP / Magma.

Fix generators a, b of **G** and write any u in the supergroups as a word in $\phi(a), \phi(b)$. Evaluating such a word gives $x \in \phi^{-1}(u)$.

Centralising or normalising elements in $x \ker \phi$ are found using linear algebra: conjugation by **G** induces automorphisms of $\ker \phi \cong 2^{1+24}$.

Standard generators

Sometimes, we search in subgroups $G \neq \mathbf{G}$. Finding elements of a group H in such G is harder.

Fortunately, if the generators of G are **standard generators** — satisfy a certain presentations for G — words for elements that generate maximal subgroups of G are often known.

These words can be found online alongside efficient algorithms for finding standard generators.

A Case Study

Consider $H \cong \mathsf{PSL}_2(59) < \mathbb{M}$. The structure of H means $H = \langle \mathsf{A}_5, i \rangle$, where i has order 2 and centralises $\mathsf{D}_{10} < \mathsf{A}_5$.

We already have $G_1 = A_5$. Consider $C_{\mathbb{M}}(A)$ for some $A \cong D_{10} < G_1$. All elements of order 2 in G_1 are of class 2B, so we can work in **G** to find $C_{\mathbb{M}}(A)$ and the potential 2B elements i.

Testing reveals which candidates extend $G_1 \cong A_5$ to PSL₂(59).

A Case Study (Take 2)

Since $PSL_2(59)$ is not a subgroup of \mathbb{M} , there is a maximal subgroup $H \cong 59:29$ instead.

This is the normaliser of an element of order 59 in the Monster.

The problem: what known subgroups can we search in?

Remember:

We need already-constructed subgroups of \mathbb{M} which intersect H in distinct subgroups.

Thank you!

2⋅™	$(D_{10} \times HN) \cdot 2$	$(A_5 \times A_{12}):2$
$2^{1+24}\cdot Co_1$	$5^{1+6}:2\cdot J_2:4$	$(A_6 \times A_6 \times A_6) \cdot (2 \times S_4)$
$2^{2\cdot 2}E_6(2):S_3$	$(5^2:4\cdot 2^2 \times U_3(5)):S_3$	$(A_5 \times U_3(8):3):2$
$2^{2+11+22} \cdot (M_{24} \times S_3)$	5^{2+2+4} : $(S_3 \times GL_2(5))$	$(PSL_3(2) \times S_4(4):2) \cdot 2$
$2^{3+6+12+18} \cdot (PSL_3(2) \times 3.S_6)$	$5^{3+3} \cdot (2 \times PSL_3(5))$	$(PSL_2(11) \times M_{12}):2$
$2^{5+10+20} \cdot (S_3 \times PSL_5(2))$	5^4 : $(3 \times 2 \cdot PSL_2(25))$:2	$(A_7 \times (A_5 \times A_5):2^2):2$
$2^{10+16} \cdot O_{10}^{+}(2)$	(7:3 × He):2	$M_{11} imes A_6 \cdot 2^2$
$3 \cdot \text{Fi}_{24}$	7^{1+4} : $(3 \times 2.S_7)$	$(S_5 \times S_5 \times S_5):S_3$
$3^{1+12} \cdot 2 \cdot \text{Suz}:2$	$(7^2: (3 \times 2.A_4) \times PSL_2(7)):2$	$(PSL_2(11) \times PSL_2(11)):4$
$S_3 \times Th$	7^{2+1+2} :GL ₂ (7)	$U_3(4):4$
$(3^2:2 \times O_8^+(3)) \cdot S_4$	$7^2:SL_2(7)$	$PSL_2(71)$
3^{2+5+10} : $(M_{11} \times 2.S_4)$	11^2 : $(5 \times 2.A_5)$	$PSL_2(59)$
$3^{3+2+6+6}$: (PSL ₃ (3) × SD ₁₆)	$(13:6 \times PSL_3(3)) \cdot 2$	$PSL_2(41)$
$3^8 \cdot O_8^-(3).2$	13^{1+2} : $(3 \times 4.S_4)$	$PGL_2(29)$
	13^2 :SL ₂ (13):4	$PGL_2(19)$
59:29	41:40	$PGL_2(13)$
-		

The maximal subgroups of M.